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4.1.1 Potentiels en thermodynamique

@ Analogie mécanique : comme la thermodynamique est une extension de
la mécanique, on cherche a déterminer des potentiels qui jouent en
thermodynamique un role analogue a celui du potentiel en mécanique.
L'équilibre s'obtient alors en minimisant le potentiel correspondant.

@ Energie interne : la fonction d'état énergie interne est une fonction des
variables d'état extensives entropie .S et volume V. Les grandeurs
conjuguées obtenues par dérivation partielle de |'énergie interne par
rapport aux variables d'état sont la température I’ et la pression p.

@ Pratique : dans des situations physiques pratiques les grandeurs
mesurées, ou contrblées, sont souvent des grandeurs intensives comme la
température 1" ou la pression p.

@ Potentiels thermodynamiques : on désire définir des fonctions de
variables d'états extensives ou intensives (e.g. S, V, p, T') qui ont la
méme dimension physique que |'énergie interne. Ces fonctions sont des
potentiels thermodynamiques si les dérivées partielles de ces fonctions par
rapport a leurs variables d'état sont égales aux grandeurs conjuguées au
signe pres.
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4.2.1 Relation de Gibbs

o Dérivée temporelle de I'énergie interne : U (S,V,{Na})
U=TS~pV+ )Y palNa (2.19)
A=1
o Différentielles : dU =Udt, dS =Sdt et dNy = N4dt
@ Relation de Gibbs :

dU =TdS —pdV + > padNa (4.1)J
A=1

@ Equations d’état : grandeurs intensives : fonctions d’'état

T=T(S,V.,{Na})
p=p(S,V,{Na}) (4.2)
HA — HA (57 Vv, {NA})
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4.2.1 Relation de Gibbs

o Espace des états : espace abstrait - ici a 3 dimensions (U, S, V)
o Energie interne : U (S,V) est représentée par la surface grise

e Température :

aU (S, V)

(2.16)

est représentée par la dérivée de la

courbe a l'intersection de la surface
U (S,V) et de la surface V' = cste

@ Pression :

oU (S,V)
oV

p(S,V)=— (2.17)

est représentée par |'opposé de la
dérivée de la courbe a |'intersection
de la surface U (S,V) et de la

surface S = cste
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4.2.2 Relation d’Euler

Extensivité de I’énergie interne : )\ sous-systémes identiques
UMNS, AV AANAY) =AU (S, V., {Na}) (4.3)

Dérivée : par rapport a A\ (4.4)

oU 0(\S) oU 8>\V Z OU O(AN4) O(\U)
O(AN4)  OA O\

905 or o) =

Les grandeurs U, S, V et N4 d'un sous-systéeme sont indépendantes de A

oU oU d oU
5095 T ooV T2 aowyg Ya=U (4-5)

L'équation (4.5) doit étre satisfaite pour tout A : soit A =1

_au d
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4.2.2 Relation d’Euler

@ Relation aux dérivées partielles :

oU
U_as V Z—NA (4.6)

@ Grandeurs intensives conjuguées :

©Q Température : T = ou (2.16)
0S
oU
Pression : p=— — 2.17
© Pression : p 317 (2.17)
: - ou |
© Potentiel chimique : p4 = ou A=1,..,r (2.18)
ON a

@ Relation d’Euler :

U:TS—pV+ZHANA (4-7)J
A—1
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4.2.3 Relation de Gibbs-Duhem

@ Relation d’Euler :
U:TS—pV+Z,LLANA (4.7)
A=1
@ Variation infinitésimale de la relation d’Euler :
AU =TdS+SdT — pdV — Vdp+ Y (uAdNA +NAduA) (4.8)
A=1
@ Relation de Gibbs :
dU =TdS —pdV + > padNa (4.1)
A=1

@ Relation de Gibbs-Duhem : différence entre (4.8) et (4.1)

SdT—Vdp—I—ZNAd,uA:O (4.9)}
A=1
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4.3.1 Fonction d’état d’'une variable

@ Transformation de Legendre : les transformations mathématiques qui
permettent de passer d'un potentiel thermodynamique a un autre
s'appellent les transformations de Legendre.

@ Transformée de Legendre : un potentiel thermodynamique est la
transformée de Legendre d'un autre car il est le résultat d'une
transformation de Legendre.

@ Démarche : on prend une fonction d'état quelconque a une variable
extensive et on effectue une transformation de Legendre pour déterminer
sa transformée de Legendre qui est une fonction d'état de la variable
intensive conjuguée. On généralise ensuite ce résultat a une fonction
d'état de plusieures variables extensives qui correspond a un potentiel
thermodynamique.

e Fonction d’état d’une variable extensive : F' (X)) strictement
monotone et dérivable (bijective et inversible)

@ Grandeur intensive conjuguée :

_ dF (X)

Y (X) e

(4.10)
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4.3.1 Fonction d’état d’'une variable

o Dérivée : la fonction Y (X) est |

la pente de la tangente de la
fonction d'état F' (X)) au point
X. La tangente intersecte
I'ordonnée a l'origine au point G. |

F

-G (4.11)

B /s
B / S
B / /
B / /
. s /
. 4 /
—_— , /
—————————— B /
_— . /
. /
B s
. /
. /
JR— . /
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@ La fonction d'état F' (X)) est une courbe déterminée par un ensemble de
points (X, F'). La tangente de pente Y (X) a cette courbe en un point X
est donc déterminée par un couple de valeurs (Y, G).

o Transformée de Legendre : inversion de (4.11)

G(Y)=F(X(Y)) - YX(Y) (4.12) |

ou X (V) est l'inverse de Y (X). La fonction d'état G (Y') de la variable
intensive Y est la transformée de Legendre de la fonction d'état F' (X)
par rapport a la variable d'état extensive X.

@ Information conservée : la transformation de Legendre est bijective.
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4.3.2 Fonction d’état de plusieurs variables

e Fonction d’état de plusieurs variables extensives : F' (X, X1,.., X,,)

@ Grandeur intensive conjuguée : a la variable extensive X

_ OF (X0, X1, .., X»)
B 0X,

Y; (Xo, X1, .., X0n) (4.13)

o Dérivée partielle : la fonction Y; (Xo, X1,.., X,,) est la pente de la
tangente de la fonction d'état F' (X, X1, .., X,,) au point X; dans le
plan ou les autres variables d’'état sont constantes. La tangente intersecte
|'axe des ordonnées au point G.

F-G

Y;
X;—0

(4.14)

o Transformée de Legendre : inversion de (4.14)

G(X07X17 "7Yi7 7Xn) = /i (X07X17 7X’L (X07X17 "7Y:i7 7Xn) ’ 7Xn)
~ Y, X (Xo, X1y Yiy o X)) (4.15)

ou X; (Xg, X1,..,Ys, .., X,,) est l'inverse de Y; (Xo, X1, .., X,,).
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4.3.2 Fonction d’état de plusieurs variables

@ Transformée de Legendre :

G (X07X17 °'7Y7:7 7X’n) = F (X07X17 7X’L (XOaXla "71/2'7 7Xn) . 7Xn>
~ Y X (Xo, X1, Yiy o X)) (4.15)

La fonction d'état G (X, X1,..,Y;, .., X,,) est la transformée de
Legendre de la fonction d'état F' (X, X1, .., X,,) par rapport a la variable
d'état extensive X;.

@ Dérivées partielles permieres : de I' et GG

OF

~Y, 4.1
0x; (4.13)
oG  OF 0X, 0X;
v = ax oy~ N~ Yigy =X (4.16)

@ Dérivées partielles secondes : de F' et GG

O’°F  0Y; 0°G 0X;
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4.3.2 Fonction d’état de plusieurs variables

@ La courbure d’'une fonction par rapport a |'une de ses variables est
donnée par sa dérivée seconde par rapport a cette variable.

e Courbure : (4.17)

092G 92F\
= (ax?) (4.18)J

@ La courbure de la fonction d'état G par rapport a sa variable intensive Y;
est I'opposé de l'inverse de |la courbure de la fonction d'état F’ par
rapport a sa variable extensive X;.

@ Transformée de Legendre : de F' par rapport a X;

OF
0X;

G=F— X, =F- Y X, (4.19)J

o Transformée de Legendre : de F' par rapport a (Xg, X1, .., X»)

— OF
H:F—;aXi

X, =F - f: Y; X; (4.20)J

1=0
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4.4.1 Energie interne

@ Potentiel thermodynamique : toute fonction d'état obtenue par
transformation de Legendre de U (S, V,{IN4}) est un potentiel
thermodynamique.

© Energie interne : U (S,V,{Na})

© Energie libre : F (T,V,{Na})

© Enthalpie : H (S,p,{Na})

@ Energie libre de Gibbs : G (T,p, {Na})

o L'énergie interne U (S,V,{N4}) est un potentiel thermodynamique
puisqu'elle peut étre obtenue par deux transformations de Legendre
successives a partir d'elle-méme.

@ Energie interne : relation d'Euler

UITS-]?V—I—Z/LANA (4.7)
A=1

o Différentielle de I’énergie interne : relation de Gibbs

dU =TdS —pdV + > padNa (4.1)
A=1
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4.4.1 Energie interne

o Différentielle de I'énergie interne :

dU =TdS —pdV + > padNa (4.1)
A=1

e Fonctions d’état conjuguées aux variables d’état : S, V, { N4}

Q@ Température :

oU (S,V,{Na})

T(S,V, {Na}) = T2 (2.16)
@ Pression :
oU (S,V,{N
p(S,V, {Na}) = — 25V INa) (2.17)
oV
© Potentiel chimique : substance A
oU (S, V,{N
i (8,V, {Nap) = 25V ANaD) (2.18)

ON 4
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4.4.2 Energie libre

o Energie libre : I'énergie libre F' (T, V,{N4}) est la transformée de
Legendre de I'énergie interne U (S, V,{N4}) par rapport a I'entropie S :

oU
F=U—- 5=U-TS 4.21
- ( )J
o Energie libre : (4.7) dans (4.21)
F=-pV+> paNa (4.22)
A=1
o Différentielle de I'énergie libre : (4.22)
dF = —pdV — Vdp+ >  (uadNa+ Nadpa) (4.28)
A=1
e Variation infinitésimale de I'énergie libre : (4.21)
dF =dU — TdS — SdT (4.23)
o Différentielle de I'énergie libre : (4.1) dans (4.23)
dF:—SdT—pdV—I—Z,uAdNA (4.24)J
A=1
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4.4.2 Energie libre

e Différentielle de I'énergie libre :

dF = —SdT — pdV + ) padNa (4.24)
A=1

e Fonctions d’état conjuguées aux variables d’état : T, V., { N}

Q Entropie :
STV {Na}) = - 2TV iNa}) (4.24)
oT
@ Pression :
OF (T.V.{N
p(T,V, {Na}) = — 2LV ANab) (4.25)
oV
© Potentiel chimique : substance A
OF (T, V.{N
a (T, V, {Na}) = 22T ANa)) (4.26)

ON A
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4.4.3 Enthalpie

o Enthalpie : I'enthalpie H (S, p,{Na}) est la transformée de Legendre de
I'"énergie interne U (S, V,{N4}) par rapport au volume V :

oU
H=U- —=V=U+pV 4.29
SV =U+p (429)
o Enthalpie : (4.7) dans (4.29)
H=TS+)» paNa (4.30)
A=1
o Différentielle de I'enthalpie :
dH =TdS+ SdT + Y (adNa+ Nadpa) (4.36)
A=1
e Variation infinitésimale de I’enthalpie : (4.29)
dH = dU +pdV + V dp (4.31)
o Différentielle de I'enthalpie : (4.1) dans (4.31)
dH:TdS+Vdp+ZuAdNA (4.32)J
A=1
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4.4.3 Enthalpie

o Différentielle de I'enthalpie :

dH =TdS+Vdp+» padNa (4.32)
A=1

e Fonctions d’état conjuguées aux variables d’état : S, p, { N}

Q@ Température :

OH (S,p,{Na})

T (S,p,{Na}) = 59 (4.33)
Q@ Volume :

V(S,p.{Na}) = ZLEDARLD (4.34)
© Potentiel chimique : substance A

pa(S,p,{Na}) = OH (5,p: 1NA}) (4.35)

ON A
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4.4.4 Energie libre de Gibbs

o Energie libre de Gibbs : I'énergie lib. de Gibbs G (T, p,{Na}) est la
transf. de Legendre de I'énergie int. U (S,V,{N4}) parrap. a S etV :

oU oU

— -8 vy=U—T —H-TS=F 4.37
G=U~- 55— 5V =U-T5+pV S +pV(3)J
Energie libre de Gibbs : (4.7) dans (4.37)
G=) paNa (4.38)

A=1
Variation infinitésimale de I'énergie libre de Gibbs : (4.38)
dG:Z(,LLAdNA—FNAd,uA) (4.44)
A=1

Variation infinitésimale de I'énergie libre de Gibbs : (4.37)
dG =dU — TdS — SdT +pdV + Vdp (4.39)

Différentielle de I'énergie libre de Gibbs : (4.1) dans (4.38)

dG =~ SdT +Vdp+ Y padNa (4.40)J
A=1
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4.4.4 Energie libre de Gibbs

o Différentielle de I’énergie libre de Gibbs :

dG=—SdT+Vdp+ )  padNa (4.40)
A=1

e Fonctions d’état conjuguées aux variables d’état : T, p, { N4}

Q Entropie :
oG (T, p, {N
5 (T,p, {Na}) = - L LD ANAD (4.41)
Q@ Volume :
oG (T N
V (T.p, {Nay) = 2T P WD) (4.42)
p
© Potentiel chimique : substance A
oG (T N
pa (T, p,{Na}) = (Lop, {Na}) (4.43)

ON A
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4.5.1 Approche vers I'équilibre - systeme et réservoir

Systéme : on caractérise |'approche vers un état d'équilibre d'un systeme
fermé formé de deux sous-systémes simples 1 et 2 séparés par une paroi
et couplés a un tres grand systeme simple appelé réservoir ou bain.

Réservoir : le réservoir est caractérisé par une ou plusieurs variables
Intensives constantes.

Equilibre : chaque sous-systeme est en tout temps en équilibre partiel
avec le réservoir. L'équilibre partiel est caractérisé par une ou plusieurs
variables intensives constantes : celles qui caractérisent le réservoir.

Univers : constitué du systeme formé des deux sous-systemes et du
réservoir est un systeme isolé.

Extensivité des variables extensives :
S=51+59 et V=V+V et N = N7 + Ny (4.45)
Extensivité des potentiels thermodynamiques :

U:U1—|—U2 et F:F1—|—F2

(4.46)
H:H1+HQ et G:Gl—I—GQ
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4.5.2 Minimum de I'énergie libre

Réservoir de chaleur

T... = cste

@ Systeme : gaz homogeéne
Q Fermé : N = N1+ Ng =cste ainsi Ic =0
@ Rigide : V=Vi+Va=cste ainsi Py =0
© Diatherme : Ig #0

@ Réservoir de chaleur : bain thermique

Q@ Température constante : Tyt = cste

@ Paroi : entre les sous-systemes 1 et 2

Q@ Imperméable : N; = cste et Ny = cste

@ Mobile : Vi # cste et Vi # cste
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4.5.2 Minimum de I'énergie libre

@ Equilibre partiel : équilibre thermique
Text =T1 =12 =T (4.47)

o Dérivée temporelle de I'énergie libre : (4.21) et (4.47) donne (4.48)

F(T,V1,V2) = U (81 (T, 1), 8 (T, V), Va, Vo ) = T S(T, V4, V)
@ Dérivée temporelle de I'énergie libre : écriture allégée

F=U-TS (4.49)
@ Premier principe : avec Py = I =0

U =Ig (1.45)
@ Deuxieme principe : puissance dissipée

TS—Ip=T%g>0 (2.29)
o Dérivée temporelle de I'énergie libre : (1.45) et (2.29) dans (4.47)
F=Ip—TS=-T%5<0 (4.50)
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4.5.2 Minimum de I'énergie libre

Réservoir de chaleur

T... = cste

o Différentielle de I'énergie libre : F'dt = dF

dF <0 Si T = cste et V' = cste (4'51)J

@ Approche de I'équilibre : systeme et réservoir de chaleur

© Evolution : déformation interne irréversible
dF <0 (température et volume constants) (4.51)
@ Equilibre : minimum de I'énergie libre
dF =0 (température et volume constants) (4.51)
Si un systeme rigide et diatherme est maintenu a température constante

a I'aide d'un réservoir de chaleur, I'état d'équilibre mécanique entre ses
sous-systemes est celui qui minimise I'énergie libre du systeme.
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4.5.3 Minimum de I'’enthalpie

Réservoir de travail

Pext = CSte

@ Systeme : gaz homogeéne
Q Fermé : N = N1 + Ny =cste ainsi Ic =
Q@ Déformable et diatherme: Py #0 et Ig #0
@ Réservoir de travail : bain mécanique

© Pression constante :  pext = cste

@ Paroi : entre les sous-systemes 1 et 2

QO Imperméable : N; = cste et Ny = cste

©Q Fixe: Vi # cste et Vh # cste (systeme déformable)
e Déformation : isentropique

Q Entropie: S =51+ 52 = cste
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4.5.3 Minimum de I'’enthalpie

@ Equilibre partiel : équilibre mécanique

Pext =P1 =P2 =P (4.52)
o Dérivée temporelle de I'enthalpie : (4.29) et (4.52)

H (Sla Sva) — U(Sla 527 Vi (Slap) 7V2 (S27p) ) —I_pv (Sla SQap) (453)

@ Dérivées temporelles de I'entropie : réservoir 0 et sous-systemes 1 et 2

: 1 : 1
Sl Tl (IO—>1 _|_ IQ—)l) et SQ T2 (IO—>2 —|_ Il—>2) (454)
@ Dérivée temporelle de lI'entropie : systeme
. . . IO+1 10%2 I2+1 11%2
S=8+8 =92 +9 |4+ ;¢ 4.55
L ( T, T, ) ( T, T, (4.55)

o Dérivée temp. de I'entropie : (3.8) et (3.18) dans (4.55) donne (4.56)

IOﬁl ]0%2 1 1 10%1 10%2
q — I B 55 B 5
( Ty i T2 ) i (T1 T2> « ( Ty i T2 ) s
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4.5.3 Minimum de I'’enthalpie

o Courant d’entropie : (2.3) et (4.56)

3ol 19
Is = T, + B (4.57)
Equation de bilan d’entropie : S =0 (2.3)
Is =—%5 <0 (4.58)
Courant de chaleur : du réservoir 0 vers les sous-systemes 1 et 2
Iog=15""+1577 (4.59)

Températures : au voisinage de |'équilibre thermique ot AT < T

AT AT
=T — — et Ty =T 4+ —

: - (4.60)

Courant d’entropie : approximation : température moyenne T (4.57)

[O—>1_|_IO—>2
O R Sy
T T

0 (4.61)
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4.5.3 Minimum de I'’enthalpie

@ Courant d’entropie :

I
Is = = <0 (4.61)

e Courant de chaleur : (4.61)

Io <0 (4.62)
o Dérivée temporelle de I'enthalpie : (4.53) écriture allégée

H=U+pV (4.63)
o Déformation : (2.30)

Py =—pV (4.64)
@ Premier principe : avec I =0

U= Py + I (1.45)
e Dérivée temporelle de I'enthalpie : (1.45), (2.30) et (4.62) dans (4.63)

H=Ig+ Py +pV =15<0 (4.65)
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4.5.3 Minimum de I'’enthalpie

Réservoir de travail

Pext = CSte

o Différentielle de I'enthalpie :

dH <0 Si S = cste et  p=cste (4.66)J

@ Approche de I'équilibre : systeme et réservoir de travail

© Evolution : transfert interne irréversible de chaleur
dH <0 (entropie et pression constantes) (4.66)
@ Equilibre : minimum de I'enthalpie

dH =0 (entropie et pression constantes) (4.66)

Si un systeme déformable et diatherme est maintenu a pression constante
a |'aide d'un réservoir de travail, et que les transferts de chaleur entre les
sous-systemes et avec le réservoir de travail ont lieu a entropie constante,
|"état d’'équilibre thermique entre ses sous-systemes est celui qui minimise
I'enthalpie du systeme.
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4.5.4 Minimum de I'énergie libre de Gibbs

Réservoir de chaleur
et de travail

T« = cste Pext = CSte

@ Systéme : gaz homogene
QO Fermé : N = N1+ Ny =cste ainsi Ic =0
@ Déformable et diatherme : Py #0 et Ig #0
@ Réservoir de chaleur et de travail :

Q@ Température constante : Ty = cste

@ Pression constante :  pext = cste

@ Paroi : entre les sous-systemes 1 et 2

@ Perméable : N; £ cste et Ny # cste
©Q Fixe: Vi # cste et Vh #£ cste  (systeme déformable)
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4.5.4 Minimum de I'énergie libre de Gibbs

@ Equilibre partiel : équilibre thermique et mécanique

Text =T1 =12 =T et Pext =P1 =P2 =D
o Dérivée temporelle de I'énergie libre de Gibbs : (4.37)

G (T,p, N1, No) =

U (S0 (T,p, V1), S5 (T,p,N2) , Va (T, p, N1) , Va (T, p, Na) , Ny, N )

— TS(T,p,N1,No) +pV (T,p, N1, No) (4.67)
@ Dérivée temporelle de I'énergie libre de Gibbs : écriture allégée

G=U-TS8+pV (4.68)
o Déformation : (2.30)

Py =—pV (4.64)
e Premier principe : (4.64)

U=1Ig+Py=1I5—pV (1.45)
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4.5.4 Minimum de I'énergie libre de Gibbs

@ Dérivée temporelle de I'énergie libre de Gibbs : écriture allégée

G=U-TS8+pV (4.68)
o Premier principe : (4.64)

U=1Iop+Py=1I5— pV (1.45)
@ Deuxieme principe : puissance dissipée

TS—Ip=T%g>0 (2.29)
o Dérivée temp. de I'énergie lib. de Gibbs : (1.45) et (2.29) dans (4.68)

G=Ig+Py—TS+pV=Ig—TS=-T%s<0 (4.69)
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4.5.4 Minimum de lI'énergie libre de Gibbs

Réservoir de chaleur
et de travail

Tw = cste Pext = Cste

o Différentielle de I'énergie libre de Gibbs :

dG <0 Si T = cste et p = cste (4.70))

@ Approche de I'équilibre : systeme et réservoir de chaleur et de travail

© Evolution : transfert interne irréversible de matiére

dG <0 (température et pression constantes) (4.70)
@ Equilibre : minimum de I'énergie libre de Gibbs

dG =0 (température et pression constantes) (4.70)

Si un systeme déformable et diatherme est maintenu a température et
pression constantes a |'aide d'un réservoir de chaleur et de travail, |'état
d'équilibre chimique entre ses sous-systemes est celui qui minimise
I'énergie libre de Gibbs du systeme.
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4.6 Processus sur des systemes couplés a des réservoirs

4.6 Processus sur des systemes couplés a des réservoirs
4.6.1 Systéme couplé a un réservoir de travail

N\

4.6.2 Systeme couplé a un réservoir de chaleur

7 N\

4.6.3 Systéme couplé a un réservoir de chaleur et de travail
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4.6.1 Systéeme couplé a un réservoir de travail

Réservoir de travail
Systéme
Pext = CSte

'i
@ Transfert de chaleur : on décrit un transfert de chaleur de

I'environnement vers un systeme fermé en équilibre avec un réservoir de
travail.

e Paroi : diatherme et mobile (entre le systeme et le réservoir)
@ Equilibre mécanique : systéme et réservoir de travail

P = Pext = CSte (4.71)
@ Travail infinitésimal : 3 pression constante p

oW = —pdV (2.60)
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4.6.1 Systéeme couplé a un réservoir de travail

@ Chaleur infinitésimale : (1.59), (2.60) et (4.31)
5Q = dU — W = dU + pdV = d (U +pV) = dH (4.60)

@ Chaleur : état initial ¢ — état final f

f
Qiss :/ 5Q (1.62)
@ Variation d’enthalpie : état initial © — état final f
Hy
AH; ;= / dH = H; — H; (4.74)
H;

o Transfert de chaleur : (4.60), (1.62) et (4.74)

Qisr=AH; ¢ Si p = cste (4'73)J

La chaleur fournie a un systéeme maintenu a pression constante par un
réservoir de travail est égale a la différence d’enthalpie entre I'état initial
et |'état final.
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4.6.2 Systeme couplé a un réservoir de chaleur

Réservoir de chaleur

Systéme |

T... = cste

@ Déformation : on décrit une compression exercée par |'environnement
sur un systeme fermé en équilibre avec un réservoir de chaleur.

o Paroi : diatherme et fixe (entre le systéme et le réservoir)
@ Equilibre thermique : systéeme et réservoir de chaleur

T = Ty = cste (4.75)
@ Chaleur infinitésimale : 3 température constante T°

5Q =T dS (2.57)
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4.6.2 Systeme couplé a un réservoir de chaleur

e Travail infinitésimal : (1.59), (2.57) et (4.23)

W =dU — 6Q=dU —TdS=d(U —-T5S)=dF (4.76)
@ Travail : état initial ¢+ — état final f
f
Wi = / ow (1.61)
@ Variation d’énergie libre : état initial ¢ — état final f
Fy
AF, ;= / dF = Fy — F, (4.78)
F;

o Déformation : (4.76), (1.61) et (4.78)

Wi s =AF;,_¢ Si T = cste (4'77)J

Le travail effectué sur un systéme maintenu a température constante par
un réservoir de chaleur est égal a la différence d'énergie libre entre 'état
initial et I'état final.
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4.6.3 Systéeme couplé a un réservoir de chaleur et de travail

Réservoir de chaleur
et de travail

T... = cste Pext = Cste

@ Transfert de matiere : on décrit un transfert de matiere de
I'environnement vers un systeme ouvert en équilibre avec un réservoir de
de chaleur et de travail.

o Paroi : diatherme et mobile (entre le systeme et le réservoir)
@ Equilibres thermique et mécanique : systeme et réservoir

T = T = cste et D = Dext = CSte (4.79)
e Chaleur infinitésimale et travail infinitésimal : (2.57) et (2.60)

5Q=TdS e 6W=—pdV
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4.6.3 Systéeme couplé a un réservoir de chaleur et de travail

Apport énergétique inf. de matiere : (1.58), (2.57), (2.60) : (4.80)
0C =dU — 6Q — W =dU — TdS +pdV =d(U—-TS+pV)=dG

Apport énergétique de matiere : état initial = — état final f

f
Cinp = / oC (1.63)
Variation d’énergie libre de Gibbs : état initial : — état final f
Gy
AGi_>f = / dG = Gf — G; (4.82)
G

Transfert de matiére : (4.82), (1.63) et (4.80)

Cimf =AG; Si T = cste et p = cste (4.81))

L'apport énergétique de matiere fournie a un systeme maintenu a
température et pression constantes par un réservoir de chaleur et de
travail est égal a la différence d’énergie libre de Gibbs entre |'état initial
et |'état final.
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4.7 Relations de Maxwell

4.7 Relations de Maxwell
4.7.1 Théoreme de Schwarz
4.7.2 Relations de Maxwell
4.7.3 Dérivées partielles d’'une composition de fonctions
4.7.4 Identité cyclique de dérivées partielles
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4.7.1 Théoreme de Schwarz

@ Théoreme de Schwarz et relation de Maxwell : |'application du

théoreme de Schwarz aux potentiels thermodynamiques donne les
relations de Maxwell entre des grandeurs physiques dérivées des
potentiels thermodynamiques.

Théoreme de Schwarz : soit une fonction d'état continue et dérivable
f (x,y) dont les dérivées partielles par rapport aux variables x et y sont
continues et dérivables. On peut permuter |'ordre des dérivées partielles
de f (z,y) (en absence de courbure de I'espace),

0 (0f (z,y) 0 (0f (z,y)

= 4,
Ox ( 0y ) 0y ( Ox ( 83)J
Relations de Maxwell : en appliquant le théoreme de Schwarz aux

potentiels thermodynamiques U (S,V), F (T,V), H (S,p), G (T,p), on
obtient les relations de Maxwell correspondantes.

Pratique : les relations de Maxwell permettent d'exprimer une dérivée
partielle dont le sens physique n'est pas évident en une autre dérivée
partielle dont le sens physique est beaucoup plus intuitif.
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4.7.2 Relations de Maxwell

@ Théoréeme de Schwarz : énergie interne U (S, V)

a(?s* (3(]5()5 V)) N aﬁv (8[](;59’ V)) (4.84)

o Dérivées partielles : énergie interne (2.17) et (2.16)

_ oU (5,V) _
=—p(S,V) et 55 =T (S,V)

oU (S, V)
oV

o Relation de Maxwell : énergie interne U (S, V)

dp(S,V) 9T (S,V)
I 1% (4'85)J

@ Astuces mnémotechniques :

© Les variables aux dénominateurs des fractions sont les variables d’état S
et V du potentiel thermodynamique énergie interne U (S, V).

@ Les grandeurs mécaniques conjuguées p et V sont sur une diagonale et les
grandeurs thermiques conjuguées S et T sont sur |'autre diagonale.
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4.7.2 Relations de Maxwell

@ Théoréme de Schwarz : énergie libre F'(T,V)

a?r (8Fé€7 V)) N a?/ (aFé? V)> (4.86)

o Dérivées partielles : énergie libre (4.26) et (4.25)

__p(TV) et aFgf;’V) _ _S(T.V)

OF (T, V)
oV

o Relation de Maxwell : énergie libre ' (T, V)

op(T,V) 0S(T,V)
or oV (4'87)J

@ Astuces mnémotechniques :

© Les variables aux dénominateurs des fractions sont les variables d’état T’
et V du potentiel thermodynamique énergie libre F (T,V).

@ Les grandeurs mécaniques conjuguées p et V sont sur une diagonale et les
grandeurs thermiques conjuguées T et S sont sur |'autre diagonale.
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4.7.2 Relations de Maxwell

@ Théoreme de Schwarz : enthalpie H (S, p)

0 (aH (S,p)) _ 0 (8H (Sm)) (4.88)

0S5 Op - Op 0S5
o Dérivées partielles : enthalpie (4.34) et (4.33)

vy e ED _psy)

OH (S,p)
dp

o Relation de Maxwell : enthalpie H (S, p)

0S Op

OV (S,p) _ 0T (S,p) (4.89)J

@ Astuces mnémotechniques :

© Les variables aux dénominateurs des fractions sont les variables d'état S
et p du potentiel thermodynamique enthalpie H (S, p).

@ Les grandeurs mécaniques conjuguées V' et p sont sur une diagonale et les
grandeurs thermiques conjuguées S et 1" sont sur |'autre diagonale.
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4.7.2 Relations de Maxwell

@ Théoreme de Schwarz : énergie libre de Gibbs G (T, p)

A (g0)- (25

o Dérivées partielles : énergie libre de Gibbs (4.42) et (4.41)

=V (T, p) et 0Gg;”,p) =—S(T,p)

@ Relation de Maxwell : énergie libre de Gibbs G (T, p)

oT Op

oV (T,p) _ 9S(T,p) (491 J

@ Astuces mnémotechniques :

© Les variables aux dénominateurs des fractions sont les variables d’état T’
et p du potentiel thermodynamique énergie libre de Gibbs G (T, p).

@ Les grandeurs mécaniques conjuguées V' et p sont sur une diagonale et les
grandeurs thermiques conjuguées 1I' et .S sont sur |'autre diagonale.
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4.7.3 Dérivées partielles d’'une composition de fonctions

e Composition de fonctions : soit la fonction f (az (y, 2) ,y) de la

fonction x (y, z) et des variables y et z.

o Différentielle : de la fonction f (:1: (y, 2) ,y)

of ((0:2),9) g (y,2) 0F (z(:2),v)

i (x (y,2) ,y) - ox (y, 2) 0y i 0y
Of (2 (y,2),9) oz (y. 2
i g?a: (y, 2) ) ((?yz | az

dy

(4.92)

@ Dérivées totale et partielle : de la fonction f (x (y, 2) ,y)

of (a: (y,z),y) 1 (y, ) . of (a: (y,z),y)

ar| _
dy|,~  0z(y,2) Oy y
Oz |, ox (y, z) 0z
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4.7.4 Identité cyclique de dérivées partielles

e Fonctions d’état inversibles : = (y, 2), y(z,z) et z (x,y)
o Différentielles : des fonctions x (y, z), y (z,x) et z (x,y)

ox ox

= = -~ 4.94

dx 9y dy + 3, dz (4.94)
Oy Oy
0z 0z

_ 9z vz 4.94

dz 5 dr + Iy dy (4.94)

@ Substitution : deuxieme et troisieme relations dans la premiere (4.94)

Ox Oy Oxr Ox Oy
1— _— —
de ( 0y (933) dz (82 i Oy az)

g (1 Ox 0z g ox N ox 0z
T —_ — — p—
0z Ox Y Jy 0z Oy
o Afin de satisfaire les équations (4.95) pour toute variation infinitésimale,
tous les termes entre parentheses doivent s'annuler.

(4.95)

Dr. Sylvain Bréchet 4 Potentiels thermodynamiques



4.7.4 Identité cyclique de dérivées partielles

@ Inverses des dérivées partielles : les termes entre parenthéses des
membres de gauche de I'équation (4.95) s'annulent.

axéyy, 2) (@((92 a:))l

Oz (y,2) _ (az (:E,y))_l (4.96)

0z ox

@ ldentité cyclique des dérivées partielles : les termes entre parenthéses
des membres de droite de I'équation (4.95) s'annulent.

Ox (y,2) Oy (z,x) 0z (z,y)
oy 0z Ox

— 1 (4.97)J
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4.8 Applications

4.8 Applications
4.8.1 Détente de Joule
4.8.2 Détente de Joule-Thomson
4.8.3 Transformation de Legendre mécanique
4.8.4 Equations de Lagrange thermodynamiques
4.8.5 Chaine d’oscillateurs harmoniques amortis couplés
4.8.6 Relations fondamentales pour les grandeurs densitaires
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4.8.1 Détente de Joule

(= (=

= e

=g

@ Systeme isolé : formé de deux compartiments rigides initialement
séparés par une paroi horizontale imperméable et immobile.

e Etat initial : le compartiment supérieur est rempli de N moles de gaz a
I'équilibre et le compartiment inférieur est vide.

e Etat final : |la paroi est brisée par la chute d'une balle et les deux
compartiments sont remplis de gaz a |'équilibre.
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4.8.1 Détente de Joule

@ Variables d’état : température 1" et volume V

o Différentielle de I'énergie interne : U (S,V)

dU (S, V) =T dS — pdV (4.1)

o Différentielle de I’entropie : fonction d'état S (7,V)
oS (T,V) aS (T,V)
1,V) = T 4.

ds (T,V) 5T d1’ + 57 dVv (4.98)

o Systeme isolé : (4.98) dans (4.1) donne (4.99)
oS (T,V) oS (T,V)
dU(S( ,V),V) o d +( = p> %

o Relation de Maxwell : énergie libre F' (T, V)
o5 (1,V) _ op(T.V)

5 5T (4.87)
e Capacité thermique : isochore (chapitre 5)
ou (S (T,V),V T
Cy = ( ) =T 05(1, V) (4.100)
oT oT
1%
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4.8.1 Détente de Joule

@ Susbtitution : (4.87) et (4.100) dans (4.99)

op (T,V)
oT

Cy dT + (T — p) dV =0 (4.101)

o Dérivée de la température : T (U,V) avec dU =0 : systeme isolé

dT (U,V) _ 0T (U, V)

. % (4.102)
o Coefficient de Joule : (4.102) dans (4.101)
or (U, V) 1 op (T, V)
oV Cv (p aT ( O3)J

@ Gaz parfait : le coefficient de Joule est nul.

@ Gaz de van der Waals : le coefficient de Joule n'est pas nul.
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4.8.2 Expérience - Détente de Joule

@ La détente de Joule est réalisée en faisant passer du gaz, qui se trouve
initialement dans un récipient de volume V}, dans les deux récipients de
volume final V¢. Le systeme est rigide et adiabatiquement fermé.

@ Pour un gaz de van der Waals (chapitre 6) caractérisé par des coefficients
positifs a et b, le coefficient de Joule (6.122) s'écrit,
(‘9TNAT7,_>f_Tf—TZ_ 1 CI,N2<
ov AV, V=V,  Cy ViV

0

@ En mesurant les températures initiale T; et finale T et les volumes initial
Vi et final V¢, on peut déterminer le coefficient a > 0.
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4.8.2 Deétente de Joule-Thomson

[ 1

b, D,

@ Systeme adiabatiquement fermé : formé d'un cylindre dans lequel
coulissent deux pistons séparés par une paroi fixe et perméable.

@ Evolution : le cylindre contient NV moles d'un gaz passant a travers la
membrane sous |'effet des pistons qui assurent respectivement des
pressions constantes p; et ps dans les sous-systemes 1 et 2.

@ Premier principe : travail réversible des pistons : dU = oW

dU, + dUy = W1 + 0Wq = —p1 dV] — po dVs (4.104)
o Pressions constantes : (4.104)

d(Ui +p1 Vi) +d Uz +p2V2) =0 (4.105)
o Différentielles de I'’enthalpie : (4.29) dans (4.105)

dH, = d Uy + p1 V1) et dHy = d (U + p2 Va) (4.106)
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4.8.2 Deétente de Joule-Thomson

@ Variables d’état : température 1" et pression p

o Différentielle de I'enthalpie : (4.105) et (4.106)

dH = dH, + dHy = 0 (4.107)
o Différentielle de I'enthalpie : H (S, p)

dH (S,p) =TdS + Vdp (4.32)

o Différentielle de I'entropie : fonction d'état S (7', p)

0S5 (T, p) 0S5 (T, p)
T
o7 dl' + 9 dp

ds (T,p) =

e Evolution isenthalpique : (4.32) donne (4.108)

Tf?S(T,p)

aS(T’p)dTJr( 5 +V> dp =

oT

dH(S(T,p),p) =T
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4.8.2 Deétente de Joule-Thomson

o Relation de Maxwell : énergie libre de Gibbs G (T, p)

0S(T,p) 9V (T,p)

— 4.91
Op oT (4.91)
@ Capacité thermique : isobare
L (@ )| os ) 4106
P oT B T (4.109)
p
o Susbtitution : (4.91) et (4.109) dans (4.108)
T
C, dT + V—Tav( ) dp =0 (4.110)
oT
@ Dérivée de la température : T (H,p) avec dH =0
dT (H,p) _ 9T (H,p) (4.111)
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4.8.2 Deétente de Joule-Thomson

o Coefficient de Joule-Thomson : (4.111) dans (4.110)

a:rg;l,m :%(Tavgg,p)_v) (4'112)J

©Q Gaz parfait : le coefficient de Joule-Thomson est nul.
pV =NRT

@ Gaz de van der Waals : le coefficient de Joule-Thomson n'est pas nul.

NZ?a
(p-|— 72 )(V— Nb)=NRT
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Expérience - Détente de Joule-Thomson

@ La détente de Joule-Thomson est réalisée en faisant passer du gaz a
travers une membrane perméable dans un cylindre adiabatiquement

fermé en maintenant les pressions initiale p; et finale ps constantes et
différentes.

@ Pour un gaz de van der Waals caractérisé par des coefficients positifs a et
b, le coefficient de Joule-Thomson (6.149) s’écrit,

oT ATZ_>f Tf— T,L' N 1 ( 4a N B Nb)
Op  Aping  pr—pi Cp \R(Ti+Ty)

@ En mesurant les températures initiale 7; et finale I’y et les pressions
initiale p; et finale pr, on peut déterminer les coefficients a et b.

Dr. Sylvain Bréchet 4 Potentiels thermodynamiques



4.8.3 Transformation de Legendre mécanique

Systéme : n points matériels identiques de masse m

Variables d’état : positions, quantités de mouvement

d1, -+, 493n, P1, .-y P3n

Energie :
an p2

E(qu,--- Q80P D3n) = 3 =+ U (g1 3n) (4.113)
1=1

Vitesses : (4.113)

. OE 0 ([ p? D;
q op; op; ( 2m ) m ( )

Lagrangien : opposé de la transformée de Legendre de |'énergie
E(q1,---,93n,P1,---,P3n) Par rapport a tous les p;

3n OF 3n
_ _ | g— ——p | = 2 _ [ 411
I ( apip> T ( 5)J
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4.8.3 Transformation de Legendre mécanique

o Lagrangien : (4.113) et (4.114) dans (4.115)

3n
. . I
L(qi, - @Bnsq1s---5G3n) = E §qu-2 —U(q1,---,q3n) (4.116)
i=1

e Quantités de mouvement : (4.116)

oL 8 (1 .
=22 9 (a2 = ma 411
Pi= g = g (QWUL> m (4.117)

@ Courbures : dérivées secondes (4.113) et (4.116)
O*E 0 (OF 0q; 1
= —~ == >0
dp;  Opi \ Op; Opi m
(4.118)
82—[4 o 0 oL o 8]?7; —m >0
07  0¢; \9¢;) \0¢)

@ Pour que la courbure du lagrangien ait le méme signe que la courbure de
I'énergie, le lagrangien L est défini comme ['opposé de la transformée de
Legendre de |'énergie E/, car cette transformation est une application
bijective qui change le signe de sa courbure.
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4.8.4 Equations de Lagrange thermodynamiques

.
@ Systeme : n points matériels identiques de masse m dans un fluide
visqueux homogene
Q@ Fermé : Ic =0
@ Diatherme : Ig # 0
© Déformable : Py # 0

@ Centre de masse au repos : P =0

@ Variables d’état : entropie, volume, positions, quantités de mouvement

57 V7 d1, -+, 93n, P1, .-y P3n
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4.8.4 Equations de Lagrange thermodynamiques

o Energie : (4.121)

3n 9
D;
E(Sv‘/7Q17 ey q3n,P1, ... 7p3n) — 2 =+ U(Sav7Q17' . °7QSn)
i=1
@ Dérivée temporelle de I'énergie
3n
- pz oU .
E = 4.122
; ¥ (4.122)
@ Quantités de mouvement :
o Dérivée temporelle de I'énergie : (4.123) dans (4.122)
GU
E = Z m q; G (4.124)

o Dérivée temporelle de I'énergie : (2.16) et (2.17) dans (4.124)

. . .2 oU
EzTS—pV+Z(méji+8q_)qi (4.125)
i=1 ¢
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4.8.4 Equations de Lagrange thermodynamiques

e Premier principe : (2.30) dans (1.17)
E:PW—I-IQ:—]?V—l—IQ (4.126)
o Equation d’évolution : (4.125) et (4.126)

3n
. . oU .
i=1 L

o Deuxiéme principe : (4.127) et (2.29) dans (2.1)

T T < 0q;

=1

3n
N oU
Sg=8— 2= _ _ <mq;;+ )q,,;>0 (4.128)

o Source d’entropie : forces de frottement visqueux F,'' (modélisation)

3n
1 fr -
s =~ ;F G; >0 (4.129)
e Equations du mouvement : (4.128) et (4.129)
oU
FEY =mg; + o i=1,..3n (4.130)

0q;
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4.8.4 Equations de Lagrange thermodynamiques

o Source d’entropie : forces de frottement visqueux F,'

3n
1 E : fr -

@ Deuxieme principe : forme quadratique des ¢; au voisinage de I'équilibre

3n
1 .9 .
o Forces de frottement interne : (4.129) et (4.131)
F" = — X, (4.132)
e Equations du mouvement :
oU
EY =mg; + o i=1,..,3n (4.130)
dg;
e Equations du mouvement : (4.132) dans (4.130)
oU
mdi+ o5 q (4.133)
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4.8.4 Equations de Lagrange thermodynamiques

Equations du mouvement :

oU
/i = — Ag; 4.133
mq; + 94, q ( )
Lagrangien :
(S VQ17° 7QS’rL7Q17' 7QB’rL — Z qu S V7Q17'°7Q?m,) (4]_34)

Dérivées du Lagrangien :

d (0L oL oU

= M q; t = — 4.135
dt (8%) ma € 94, 90, (4.135)
Equations de Lagrange généralisées : (4.139) dans (4.137)
d (0L oL

- = — ¢ 4.136

Les équations de Lagrange thermodynamiques sont constituées de 3n
équations de Lagrange généralisées (4.136) couplées a la source
d'entropie (4.131) par les vitesses ¢;.
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4.8.5 Chaine d’oscillateurs harmoniques amortis couplés

@ Systeme isolé : chaine de n + 1 oscillateurs harmoniques amortis
couplés identiques (n points matériels) de masse m, de rigidité k et de
longueur au repos £y dans un fluide visqueux.

Qlsolé: Py =Ig=1c=0
@ Centre de masse au repos : P**' = (
@ Variables d’état : entropie, positions, vitesses
S, x1, .., Tn, T1, .., Tp,

@ Energie interne : énergie potentielle élastique et de frottement
1 n
U (8,21, -, Tn) = 5 > k(@i — @ — L) + U (S) (4.137)
i=0

ou zg=0 et 11 =(Mn+1)%.
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4.8.5 Chaine d’oscillateurs harmoniques amortis couplés

e Lagrangien :

L(S,Qfl,...,xn,ftl,...,j?n) —
Il = ., 1 5 (4.138)
5 ;mxi -5 ;k(xi+1— x; — by)" — U (9)
o Equations de Lagrange généralisées : (1.136)
d (0L OL
_ = —\g; ou i=1,.., 4.139
dt <8$z) (%Z v ou ! " ( )
@ Dérivées du Lagrangien :
d ( OL ) .
; — mx;
CgL O (4.140)
8%7; = ]C (5131'4_1 — X; — 60) — k (a:z — X;—1 — 60)
o Equations du mouvement : (4.140) dans (4.139)
mI; + )\331 — k (33@'4—1 — 2x; + 337;_1) =0 (4.141))
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4.8.5 Chaine d’oscillateurs harmoniques amortis couplés

e Equations de Lagrange généralisées :
mxz + )\5137, — k (Zlfi_H — 2587; + 377;—1) =0 (4.141)

e Equation thermique : (4.131)

I — 5
Ns = ; Ai? >0 (4.142)J

@ Evolution : processus irréversible - dissipation
s’il existe x; #£ 0 alors s >0
@ Equilibre : maximum de I'entropie
si ;=0 V i=1,..,n alors Ys =20

o Equilibre : (4.143) ou #;, =0 et &; =0

Tit1 — 2¢; +x,1 =0 ainsi Tit1 — T3 = T3 — Tj—1 = EO J
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Grandeurs densitaires : grandeurs extensives par unité de volume ou de
masse.

@ Densités volumiques :

U S Ny
— _ 2 4 4.144
U= et S=v et nA= ( )

o Relation de Gibbs : (4.1) divisée par le volume V/

U dS  dV | C dN 4

A ] 4.145
= = pV+A:1MA 7 ( )

o Différentielles des densités volumiques :

U\ dU A%
du=d|=)=—~—-U=—
v=a(7)

ds:d(ﬁ) _ 45 gdv (4.146)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Relation de Gibbs : combinaison linéaire de (4.146) dans (4.145) donne

(4.147)
" d dV
du—Tds—Z,uAdnA—l— U—TS+pV—ZMANA W:O
A=1 A=1
@ Relation d’Euler :
UITS—pV—I—Z/LANA (4.7)

A=1

o Relation de Gibbs densitaire volumique : (4.7) dans (4.147)

du:Tds+Z A dna (4.148)
A=1
o Relation d’Euler : (4.7) divisée par le volume V
U S - Na
—_ =T = _ = 4.149
% v D+ A v ( )
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Relation d’Euler densitaire volumique : (4.144) dans (4.149)

u:Ts—p—I—ZMAnA (4.150)
A=1
o Différentielle de la relation d’Euler densitaire volumique :
du =T ds+ sdl — dp+Z(,uAdnA+nAd,uA) (4.151)
A=1

@ Relation de Gibbs densitaire volumique :

du:Tds+Z fadna (4.148)
A=1

@ Rel. de Gibbs-Duhem densitaire volumique : (4.148) dans (4.151)

sdT — dp+z nadus =0 (4.152)}
A=1
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Densités massiques :

ut = o et s = et vt =47 (4.153)

@ Masse molaire : masse m 4 d’'une mole de substance A

M = i Nygma
A=1

@ Potentiel chimique massique et concentration massique :

Naim
HA et CZ:AA

* 4.154
A moa M ( )

o Relation de Gibbs : (4.1) divisée par la masse M
=T = _ p — 4.1
7= TPt 2L Ay (4.155)
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4.8.6 Relations fondamentales pour les grandeurs densitaires

o Différentielles des densités massiques :

dﬁ:d(g):@—U‘i—M

M M M?2
. S ds dM
ds = (M)‘M_SW
1% A% dM (4.156)
v :d(M)ZM‘ 2
dey g (Na) _dNa_  aM
ma  \M ) M A2

@ Relation de Gibbs : combinaison linéaire de (4.156) dans (4.155)

du™ — T'ds™ + pdv*™ — Z Wy dcy

A=l (4.157)

d dM
+ (U— TS+pV — Z /LANA> W:O
A=1
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Relation d’Euler :

UZTS—pV+Z,LLANA (4.7)
A=1

o Relation de Gibbs densitaire massique : (4.7) dans (4.157)

du* =T ds* — pdv* + Z [y dcy (4.158)J
A=1

@ Relation d’Euler : (4.7) divisée par la masse M

r

U S \ j: M A I-VAmA
b = ma M

4.1
M M M (4.159)

o Relation d’Euler densitaire massique : (4.154) et (4.155) dans (4.159)

u" =Ts" — pv* + Z Wy Ca (4.160)J
A=1
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4.8.6 Relations fondamentales pour les grandeurs densitaires

@ Relation d’Euler densitaire massique :
u" =Ts" — pv*+z Wy Cy (4.160)
A=1

o Différentielle de la relation d’Euler densitaire massique :

du* =Tds* 4+ s"dT — pdv* — v" dp + Z (i dcy +cydu’y) (4.161)
A=1

@ Relation de Gibbs densitaire massique :
du™ =T ds" — pdv™ + Z Wy dcy (4.158)
A=1

@ Rel. de Gibbs-Duhem densitaire massique : (4.158) dans (4.161)

s dT — v™ dp + Z cydpy =0 (4.162)J
A=1
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